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This online appendix contains five different parts. Appendix A gives more information on the

experimental design. Appendix B describes the data sources and cleaning. Appendix C covers the

Continuous Emissions Monitoring System (CEMS) data on pollution, specifically, including im-

putation rules for missing pollution data. Appendix F gives additional empirical results to support

those in the main text. Appendix G provides our benefit-cost analysis.
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Appendix A

A. APPENDIX: EXPERIMENTAL DESIGN

This section gives more information about the experimental design. Table A1 gives the timeline of

the experimental intervention and data collection. Table A2 describes the duration and market cap

for each compliance period of the emissions market. Table A3 describes attrition in the sample by

treatment arm and with respect to each source of data. Table A4 duplicates the balance table in the

main text but without the sample restriction to plants that report CEMS data.
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Table A1. Intervention timeline

Compliance Period Data Collection

Survey CEMS

Dec-2018

Baseline survey

Apr-2019 CEMS data
begins

Jul-2019 Mock-I
Aug-2019 Mock-II
Sep-2019 Period-I
Oct-2019 Period-II
Nov-2019 Period-III
Jan-2020 Period-IV
Feb-2020 Period-V
Mar-2020 Period-VI
Apr-2020

Interregnum
(COVID-19)

Oct-2020 Mock-III
Nov-2020 Interregnum (Diwali)
Dec-2020 Period-VII
Jan-2021 Period-VIII

Endline survey

Feb-2021 Period-IX
Mar-2021 Period-X

Compliance periods were of heterogeneous length, though most lasted approxi-
mately one month; of particular note, Period-III began in the middle of November
and lasted 45 days until early January. Baseline and endline surveys collected data
on plant and boiler house costs, revenue, and emissions abatement mechanisms.
While CEMS device readings were collected from April 2019 onward, data avail-
ability was low until the emissions trading scheme commenced in July 2019. Dur-
ing mock periods, plants simulated live period transactions with monetary vouch-
ers. We had two interregnum periods where the market was closed: the first wave
of the COVID-19 pandemic and shutdowns, and Diwali in 2020. Plant production
remained sufficiently high during Diwali in 2019 to continue market operations.
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Table A2. Compliance periods and market caps

Period Start Date End Date Days Cap (kg/30 days) Per-plant Cap (kg/30 days) Total Cap (kg)

Mock-I 2019/07/15 2019/08/12 29 280,000 1,728 270,667
Mock-II 2019/08/13 2019/09/15 34 280,000 1,728 317,333
Compliance-I 2019/09/16 2019/10/15 30 280,000 1,728 280,000
Compliance-II 2019/10/16 2019/11/15 31 200,000 1,235 206,667
Compliance-III 2019/11/16 2019/12/31 46 180,000 1,111 276,000
Compliance-IV 2020/01/01 2020/01/31 31 170,000 1,049 175,667
Compliance-V 2020/02/01 2020/02/29 29 170,000 1,049 164,333
Compliance-VI 2020/03/01 2020/03/21 21 170,000 1,049 119,000
Interregnum-I 2020/03/22 2020/10/11 204 - - -
Mock-III 2020/10/12 2020/11/11 31 170,000 1,049 175,667
Interregnum-II 2020/11/12 2020/11/30 19 - - -
Compliance-VII 2020/12/01 2020/12/31 31 170,000 1,049 175,667
Compliance-VIII 2021/01/01 2021/01/31 31 170,000 1,049 175,667
Compliance-IX 2021/02/01 2021/02/28 28 170,000 1,049 158,667
Compliance-X 2021/03/01 2021/03/31 31 170,000 1,049 175,667

This table reports the start and end date of compliance periods and the market cap of each period. The market cap is the total amount of PM
emissions – summed up across all market participants - that is allowed per month (30 days) under the Emissions Trading scheme. The total market
cap varies across compliance periods, due to the duration of the compliance period. Specifically, the total market cap in a compliance period is
the market cap ⇥ 30 / (number of days in the compliance period). The per-plant cap is calculated by dividing the market cap by 162, the number
of in-sample plants in the treatment arm. The market was closed during Interregnum-I due to the COVID-19 pandemic and during Interregnum-II
following the Divali festival.
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Table A3. Sample determination and attrition by treatment status

Control Treatment Total

Plants that received treatment assignment 168 174 342
Closed/extinct plants with treatment assignment 10 10 20
Operational-at-baseline plants with treatment assignment 158 164 322

Plants removed from ETS sample by GPCB 2 2 4
In-sample plants 156 162 318

Plants incompetely treated due to closure 7 6 13
Plants completely treated 149 156 305

In-sample plants surveyed at ETS Baseline 147 157 304
In-sample plants manually stack sampled at ETS Baseline 147 157 304
In-sample plants with GPCB administrative data 156 162 318
In-sample plants reporting CEMS data 136 156 292
In-sample plants surveyed at ETS Endline 142 153 295
Treated plants with market trading data - 155 155

This table reports the sample determination and attrition during the ETS experiment. Of the original ETS-CEMS
sample of 373 plants, 342 operational plants received treatment assignment in May 2019 (row 1). Of these 342 plants
included in the ETS treatment randomization, 20 plants were extinct or permanently closed (row 2). The permanent
shutdown status of these 20 plants has been verified with Ringelmann survey panel data covering the sample from
March 2018 to June 2019, as well as regulatory inspection and audit documentation on the GPCB administrative
portal. The 342 plants that received treatment assignment, less the 20 plants that received assignment while extinct or
shutdown, yield 322 operational plants with treatment assignment at baseline (row 3). Four of these 322 operational-
at-baseline plants were officially removed from the ETS sample by GPCB after the treatment assignment (row 4).
Three of the removed plants (2 in control, 1 in treatment) are seasonal sugar cooperatives, operational for only four
months of the year; the fourth treatment plant is a particle-board producing plant which uses bagasse, rather than
coal, as fuel. Of the 318 in-sample plants, 13 are known to have been incompletely treated by the intervention, due
to temporary financial closure before or after the treatment assignment was done (row 6). The 304 plants surveyed at
baseline are distinct from the 304 plants manually sampled, and are therefore reported separately (rows 8, 9). This
paper reports experimental results from the sample of 292 plants reported at least one day of CEMS data from April
16, 2019 to April 3rd, 2021 (row 11). Of the 162 in-sample plants in the treatment group, 153 plants have market
trading data (row 13).

Table A4. Balance of plant characteristics by treatment status, full sample

Treatment Control Difference
(1) (2) (3)

Panel A: Plant Measures
Total electricity cost (1,000 USD) 456.2 389.1 67.1

[853.1] [660.7] (89.6)
Log(plant total heat output) 15.6 15.5 0.085

[0.61] [0.59] (0.067)
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Size as recorded on environment consent (1 to 3) 1.36 1.40 -0.038
[0.63] [0.65] (0.073)

Small-scale (size=1) 0.72 0.69 0.033
[0.45] [0.47] (0.053)

Large-scale (size=3) 0.083 0.088 -0.0056
[0.28] [0.28] (0.032)

Number of stacks 1.08 1.05 0.035
[0.41] [0.21] (0.037)

Textiles sector (=1) 0.85 0.85 -0.0032
[0.36] [0.36] (0.041)

Gross Sales Revenue in 2017 (1,000 USD) 12614.5 13628.3 -1013.8
[42698.0] [53258.9] (5680.6)

Panel B: Plant Abatement and Investment Cost
Boiler house employment 36.8 31.7 5.13

[32.5] [30.0] (3.59)
Boiler house capital expenditure (1,000 USD) 198.3 164.2 34.0

[398.6] [190.9] (36.7)
Boiler house operating cost (1,000 USD) 138.1 111.0 27.1

[202.6] [84.9] (17.6)
APCD: Cyclone present 0.98 0.97 0.0081

[0.14] [0.16] (0.017)
APCD: Bag filter present 0.80 0.86 -0.055

[0.40] [0.35] (0.043)
APCD: Scrubber present 0.64 0.61 0.032

[0.48] [0.49] (0.056)
APCD: ESP present 0.11 0.082 0.033

[0.32] [0.27] (0.034)

Panel C: Plant Pollution Measures
Plant total PM mass rate (kg/hr) 3.62 3.51 0.11

[4.86] [3.76] (0.50)
Plant mean PM concentration (mg/Nm3) 177.9 168.5 9.37

[153.6] [151.5] (17.5)
Plant mean Ringelmann score (1 to 5) 1.36 1.35 0.0090

[0.42] [0.37] (0.045)
Above regulatory standard at ETS baseline (=1) 0.33 0.28 0.052

[0.47] [0.45] (0.053)

Number of plants 162 156
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This table shows differences in plant measures (panel A), plant abatement and investment cost (panel B),
and plant pollution (panel C) between the treatment and control groups of plants in the baseline survey
conducted from December 2018 to January 2019. This sample consists of 318 plants in the ETS experiment.
In panel B, cyclone, bag filter, scrubber, and electrostatic precipitator (ESP) are different devices used to
reduce emissions. Some plants did not respond to some questions in the survey. For the control group,
the numbers of observations are 137 for boiler house capital expenditure, 141 for gross sales revenue, 148
for the Ringelmann score, 156 for plant total heat output, and 147 for the rest. For the treatment group,
the numbers of observations are 147 for boiler house capital expenditure, 150 for gross sales revenue, 160
for Ringelmann score, 162 for plant total heat output and the number of stacks, and 157 for the rest. The
first and second columns show means with standard deviations given in brackets. The third column shows
the coefficient from regressions of each variable on treatment, with robust standard errors in parentheses.
⇤p <0.10; ⇤⇤p <0.05; ⇤⇤⇤p <0.01.
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B. APPENDIX: DATA

This Appendix B discusses data from our plant survey and from administrative records on permit

trade. The following Appendix C covers data from Continuous Emissions Monitoring Systems

(CEMS).

B.1. Survey data

The ETS baseline survey was conducted from December 2018 to February 2019. The unit of

analysis is a plant. The survey consists of three main sections: a general section, a technical section,

and a pollution sampling section. In the general section, researchers at J-PAL South Asia asked

the plant managers questions about plant operations. Researchers then spoke to boiler engineers to

collect information about the machinery specifications for the technical section.

As part of the technical survey environmental labs collected samples from the stack(s) (i.e.,

chimney) attached to the boiler and/or thermopack to measure the PM concentration and PM mass

rate. Of 304 plants covered in the technical survey 289 have only a single stack. Participation in the

survey is voluntary. Plants were notified by J-PAL South Asia that their name and data would not

be published in any report, and their data would never be shown to the Gujurat Pollution Control

Board (GPCB). J-PAL covered the cost of stack sampling and surveys.

Figure B1 shows the distribution of emissions concentrations in the baseline survey by treat-

ment arm. The red vertical lines at 150 mg/Nm3 indicate the regulatory standard. Many plants are

out of compliance with the standard, sometimes by a factor of two or more. Table I, panel C shows

the plant’s mean PM concentration from sampling and an indicator for non-compliance. A total of

66% of plants are in compliance at baseline in the treatment group and 72% in the control group.

In addition to stack sampling, J-PAL South Asia had conducted ten rounds of Ringelmann

surveys from February 2018 to June 2019. The Ringelmann score is a scale for measuring the

density of smoke as it appears to the naked eye. The scale has five levels of density. Score 1 to 5

correspond to an opacity of 20%, 40%, 60%, 80% and 100%. Prior to Ringelmann surveys, GPCB

informed plants that the information collected would not be used for determining compliance with
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Figure B1. Distribution of Pollution Before the Experiment

15
0 

m
g/

N
m

3

15
0 

m
g/

N
m

3

0
.0

05
.0

1
.0

15

0 200 400 600 0 200 400 600

Control Treatment
D

en
si

ty

ETS baseline plant mean PM concentration (mg/Nm3)

This figure shows the distributions of the plant PM concentration by treatment status as measured by manual iso-
kinetic stack sampling at the ETS baseline (December 2018 to January 2019). One PM sample was collected from
each industrial stack by a third-party laboratory. The histograms are truncated at the 95th percentile (520 mg/Nm3).
The red, vertical lines indicate the regulatory concentration standard of 150 mg/Nm3. At the ETS baseline, 28%
of sampled plants in the control group and 34% of sampled plants in the treatment group had readings above this
standard.

the GPCB norms or any other regulatory purpose.

In Table I variables in panel A are from the general section of the ETS baseline survey, and

those in Panel B are from the technical section. In panel B, cyclones, bag filters, scrubbers, and

electrostatic precipitators (ESPs) are air pollution control devices (APCDs) used to abate PM emis-

sions. In panel C, the plant’s total PM mass rate is the sum of the plant’s stacks’ PM mass rates

measured from stack sampling. The plant’s mean Ringelmann score is the average of scores from

the four pre-treatment rounds of Ringelmann surveys conducted from April 2019 to June 2019.

B.2. Trading data

The paper uses administrative data on permit bids and offers from NeML, the market opera-

tor. Table B1 shows summary statistics on permit bids (panel A) and executed trades (panel B).

Figure B2 shows the distribution of the number of bids placed per plant in each compliance period.
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Table B1. Trading data summary statistics

All Purchase Sale

Panel A: Order
Order quantity (kg) 411.61 429.50 398.78

(707.98) (565.09) (794.52)
Order price (Rs/kg) 11.25 9.47 12.52

(11.56) (10.50) (12.10)
Order price (Rs/kg), weighted by quantity 9.23 8.42 9.86

(8.49) (8.71) (8.27)

Observations 8433 3520 4913

Panel B: Trade
Trade quantity (kg) 360.42 389.36 327.18

(564.45) (544.09) (585.37)
Trade price (Rs/kg) 9.29 9.19 9.40

(7.39) (9.31) (4.20)
Trade price (Rs/kg), weighted by quantity 8.40 8.16 8.73

(6.17) (7.26) (4.21)

Observations 3775 2018 1757

This table shows the mean of order quantity and price (panel A) and trade quantity and price (panel B),
with the standard deviation given in the brackets.
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Figure B2. Distribution of number of bids placed per plant by compliance period
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This figure presents the distributions of number of bids placed per plant by compliance period, truncated at 40 (about
99th percentile). The bin width is 1. The red line indicates the median number of bids placed.
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C. APPENDIX: POLLUTION MONITORING

C.1. Measuring plant emissions

We describe how we construct plant-level monthly average PM mass (in kilograms). CEMS

provides stack-level daily reporting hours and uncalibrated daily average PM mass rate (kg/hr) or

PM concentration (mg/Nm3). A plant might have multiple stacks. A month in our analysis is

defined as the 16th of this month to the 15th of next month.32 We follow four steps: calibration,

truncation, imputation and aggregation.

1 Calibration. The raw data set consists of 242,303 daily observations of 337 stacks (318

plants) from April 16th, 2019 to April 3rd, 2021. Plants can choose what kind of CEMS device to

install (Type 1 or Type 2), so long as the device meets technical standards and passes the calibration

test. Generally the devices calibrated to mass rates (Type 1) are simpler and less expensive than

having a combination of a concentration device and a flowmeter to measure volume. Most plants

therefore install Type 1 devices, without any mandate to do so from the regulator. The Type-1

devices measure the daily average PM mass rates (kg/hr), and the Type-2 devices measure the

daily average PM concentration (mg/Nm3).

The PM mass rate and concentration are calibrated according to the device type. For a stack i

( j) that uses Type-1 (2) devices, we calibrate its average PM mass rate (concentration) on the day

d using the formula

PM Ratei,d = miPM Rateraw
i,d + ci,

PM Conc j,d = m jPM Concraw
j,d + c j,

where m and c are stack’s calibration factors. Any negative calibrated value is set to missing. We
32This definition was an artifact of the market’s initial timing. The first compliance period began on the 16th of

September, following two mock periods running from the 16th of July. GPCB intended to start on the 1st of July but
pushed the market back by two weeks to allow a grace period and increase CEMS reporting at the start of the market.
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convert the mass rate to concentration, or vice versa, using

PM Conccal
i,d =

10002 PM Ratecal
i,d

(3600 max velocityi)⇥ stack areai
,

where max velocity is the maximum flue velocity (m/s) of calibration samples, and stack area is

the stack cross-sectional area (m2).

C.2. Imputation

Before we do any imputation, we truncate outliers in the non-missing data. Within each stack-

day we take the average of the reported PM kg/hr at the minute-level. This gives us a set of

stack-days across the entire sample. We then set to missing all those stack-days which fall above

the 99th percentile.

Our final unit of observation is stack-month emissions (which are then summed within plants

to get plant-months). To calculate emissions at the stack-month level we sum the emissions at the

minute-level across all the minutes in the stack-month. Thus, our imputation aims to fill in all

missing stack-minutes. We impute in two stages: first within the stack-week observation unit, and

second within or across stack-months.

The first step is within stack-week imputation. Emissions are imputed for all missing stack-

minutes in stack-weeks which have any data reported. To do this, we fill in all minutes in each

week with the stack’s average reported emissions during that week.

The second step is to either perform within stack-month imputation or across stack-month

imputation. How we do this depends on which imputation rule we use. The three options are as

follows:

• The “no imputation” rule only performs within stack-month imputation. Any remaining

missing minutes from the first step (i.e. those in months with some data reported but in

weeks with no data reported) are imputed at the average reported value across the entire

month. This procedure does not perform any across stack-month imputation and leaves

stack-months with no reported data as missing.
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• Rule A (“Stack Experiment”) imputes stack-weeks which do not report any data at the

average level of the reported values for that stack over the entire ETS experiment (excluding

the interregnum periods).

• Rule B (“Treatment”) imputes stack-weeks which do not report any data at the average

level of the reported values for that appropriate Treatment/Control group for that month (i.e.

if that stack is part of the control group we average over just control plants in that month).

In Figure C1 we show the distribution of reporting frequency among those stack-months which

require some intra-month imputation.

C.3. Treatment effect on pollution under alternate imputation rules

Figure V shows the time series of pollution by treatment status. Here we show the same series

under alternate imputation rules for missing data. Figure C2 shows the data availability of CEMS

data on pollution by treatment arm. Figure C3 replicates Figure V, from the main text, but with

alternate imputation rules for missing data. Table C1 summarizes the level of log PM emissions

by imputation rule and Figure C4 compares the distribution of pollution under different rules.
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Figure C1. Share of data available within month for months with partial data
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This figure plots a histogram of data availability at the stack-month level. The only stack-months included are
those which require intra-month imputation, which are those with some, but not complete, minute-level reporting
throughout the month. This represents 73% of the stack-months in the sample. The y-axis represents the portion of
all plant-months in that panel which fall into the corresponding bin. Each panel represents a different quarter-year
of the sample, excluding interregnum periods.
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Figure C2. Data availability from CEMS by treatment status
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The figure shows the percentage of plants reporting, at weekly frequency, from April 2019 to March 2021. The
missing pollution readings are imputed within a stack-week, but not across stacks or weeks. This sample consists
of 292 plants that had at least one day of PM data from CEMS devices during the ETS experiment. The treatment
group is represented by the solid (blue) line, and control group by the dashed (grey) line. The grey regions mark the
ten compliance periods in the emissions market. The light blue regions mark the two interregnum periods when the
emissions market was closed.
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Figure C3. PM emissions by treatment status

A. Rule A: Stack-Experiment
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B. Rule B: Treatment-Month
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The figure shows the weekly mean per-plant PM emissions in kilograms calculated at a monthly rate equivalent, from
April 2019 to March 2021. In the top panel, the missing pollution readings are imputed within stack-week, and then
within stack-experiment. In the bottom panel, they are imputed within stack-week, and then within treatment-month.
Appendix C.1 provides a detailed note on the construction of the PM emission variable. This sample consists of
292 plants that had at least one day of PM data from CEMS devices during the ETS experiment. The treatment
group is represented by the solid (blue) line, control group by the dashed (grey) line. The grey regions mark the ten
compliance periods in the emissions market. The light blue regions mark interregnum periods when the emissions
market was closed. The horizontal (red) lines denote the per-plant month market cap for each period. The aggregate
market caps for each compliance period were: 280 tons per 30 days (for Mock-I, Mock-II, and Period-I), 200 tons
per 30 days (for Period-II), 180 tons per 30 days (for Period-III), and 170 tons per 30 days thereafter.
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Table C1. Mean of the log(PM emissions) by imputation rules

Control Treatment All

No Imputation 6.67 6.52 6.58
[1336] [1899] [3235]

Rule A: Stack-Experiment 6.80 6.54 6.66
[1768] [2028] [3796]

Rule B: Treatment-Month 6.88 6.59 6.72
[1768] [2028] [3796]

The table shows the mean ln[PM emissions (kg/month)] with the number of observa-
tions given in the brackets by different imputation rules in the control group, treatment
group, and the whole sample. Observational unit is stack-month, excluding interreg-
num and mock trading periods, across 292 potential plants in the whole sample.

C.4. Market Replacement Rule for Missing CEMS Data

Subsection C.1 gives the data imputation rule for pollution we use for the purposes of our

analysis. The goal of this rule is to estimate mean emissions as accurately as possible for plants

that are missing some observations on pollution. In this subsection we show the data replacement

rule that was used in real time by the market. This replacement rule has two purposes: filling gaps

in the emissions record, and penalizing plants for non-reporting.

Table C2 shows the data replacement rule used in the market. The rule assumes that emissions

are higher when data is missing for a longer period of time, in order to incentivize plants to report

emissions reliably. By construction, the replacement rule used in the market will be upward biased

relative to mean emissions during the time a plant is reporting.

C.5. Absence of Direct Effects of Monitoring on Emissions

We have interpreted the control group in our evaluation as informative about outcomes under

command-and-control regulation. One difference between the control and the status quo in Gujarat

prior to the introduction of the market was that the control group also reports real-time emissions

data using CEMS technology. This data underpins our experimental evaluation but could not be

used to penalize plants since the legal notifications governing the status quo regime required that
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Figure C4. Kernel density of PM emissions by treatment status

A. PM emissions

B. log(PM emissions)

This figure plots the kernel density of PM emissions (kg/month) in Panel A and log(PM emissions) in Panel B,
both by treatment status, in different stages of imputation described in Section C.2. Stack-Week corresponds to the
emissions variable after step 2. Stack-Month, Stack-Experiment, and Treatment-Month correspond to the variables
constructed based on the No Imputation Rule, the Imputation Rule A, and the Imputation Rule B, respectively.
Imputing the treatment group mean causes values to converge to the group mean, so the distribution of PM emissions
and that of log(PM emissions) should have less dispersion under Rule B. Since the distribution of emissions is highly
positive-skewed, the emissions of most plants are less than the group mean. Rule B, therefore, inflates the emissions
of those plants. As a result, the peak of the kernel density curve under Treatment-Month for the control group shifts
to the right. As the distribution of PM emissions is more clustered near the mean under Rule B, the mean of log(PM
emissions) should be closer to the log of mean PM emissions for Rule B. By the concavity of log function, the log
of mean is no less than the mean of log values. Hence, the mean of log(PM emissions) should be higher for Rule B
than others.

regulatory action be based on pollution samples collected manually.

Here we ask whether CEMS monitoring, even without accompanying regulatory changes,

might itself change plant behavior. We worked with GPCB to rollout CEMS as a randomized
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Table C2. Imputation Rules for Missing CEMS Data

% Data Available
During Week Imputation for Missing Stack Data Values (kg/hr)

> 95% Stack’s own mean operating emissions load during the week
80-95% Stack’s own 75th percentile emissions load during the week
50-80% Stack’s own 90th percentile emissions load during the week
1-50% Stack’s own 90th percentile emissions load during the three months

prior to the start of the compliance period
< 1% Flat rate of population emissions load (8.08 kg/hr)
The table gives the data replacement rule used in the emissions market. The left column shows the raw data availability
during the week. The right column shows the imputation rule for each level of data availability.

experiment in order to test for such monitoring effects. Plants were randomly assigned to one of

three phases. The random assignment means that plants receiving a late CEMS mandate form a

valid control group for those with an early mandate.

We present results from a simple specification regressing measures of plant pollution obtained

from manual measurements on CEMS treatment status. CEMS obviously cannot form the outcome

measure for a treatment mandating CEMS installation. The pollution data comes from the result

of manual emission samples carried out by the environmental regulator as part of their inspection

schedule. We run the following regression:

yit = b0 +b1Treati ⇥Postt +ai + gt + eit

where ai is a plant fixed effect and gt is a month by year fixed effect. The dummy Treati is

1 for plants in Phase 1 and 0 for plants in Phase 3. The outcome variable y is a measure of plant

pollution from manual readings taken by the GPCB as part of their regular schedule of testing. The

variable Postt is 0 for all control observations. For treatment (phase 1) units, it takes the value 1

once a plant has installed CEMS. b1 is the treatment effect of CEMS on pollution.

Table C3 reports results from this regression. The main conclusion is that there is little evidence

of differences in pollution between plants that had already installed CEMS relative to those that had

not. Sudarshan (2023) provides related results including additional information on the rollout of
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CEMS in Gujarat, a description of different technologies, and practical considerations associated

with using this data for regulation.

Table C3. Effects of CEMS Installation on Plant
Emissions

PM, mg/Nm3 Log(PM)
(1) (2)

Treatment Effect 0.432 -0.0601
(23.84) (0.0912)

Observations 796 796
Year-Month FE Yes Yes
Plant fixed effects Yes Yes
Plants 197 197
R2 0.3384 0.4276
Mean dependent variable 142.8 4.757

Dependent variable emission measures are from GPCB’s regularly
scheduled manual samplings. Unit of observation is plant. Sample
is restricted to plants in Phases 1 and 3 of CEMS rollout. The
treatment indicator in the regression is set to the interaction of
the plant being in Phase 1 and not being in the control group.
The treatment indicator is therefore set to 0 for the union of all
experiment control plants and all Phase 3 plants. Standard errors
are clustered at the plant-level.
⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01

C.6. Treatment effect on PM emissions with different imputation rules for the con-

trol and treatment groups

This section examines how treatment effects vary based on the stringency of the imputation

rules applied to control and treatment plants. Table C4 presents the results. On the main diag-

onal, where the imputation rules are assumed the same, the treatment effect is as large or larger

in magnitude as the preferred estimates. The estimated treatment effect grows larger with more

punitive (higher quantile) imputation rules because control plants are missing more data than treat-

ment plants. Thus increasing emissions for missing data increases control emissions more than

treatment emissions and increases the magnitude of the estimated treatment effect.

Off the main diagonal below, the treatment imputation rule is assumed to be relatively higher
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than for the control. For example, in the first column, Rule A is maintained for imputation in the

control group, roughly imputing emissions at the mean for the same plant during times when it is

reporting. The rows give the estimated treatment effect if the imputation rule for the control group

remains at Rule A but the imputation rule for the treatment group increases, corresponding to

higher emissions assumptions in the treatment group when treatment CEMS are not reported. The

treatment effect is similar to the main estimate, although somewhat reduced, even when missing

emissions in the treatment group are imputed at the 80th percentile of treatment group emissions

when reporting. The treatment effect is negative but not statistically significant if treatment group

emissions are imputed at the 90th percentile of treatment group emissions when reporting, and

close to zero if treatment group emissions are imputed at the market imputation rule, which fills in

extremely high levels of emissions as punishment when a plant does not report.
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Table C4. Treatment effect on PM emissions (log(PM mass/month)) with different
imputation rules for the control and treatment groups

Imputation rule – control

Rule A
(1)

p70
(2)

p80
(3)

p90
(4)

Market
(5)

Im
pu

ta
tio

n
ru

le
–

tre
at

m
en

t (1) Rule A -0.282*** -0.368*** -0.461*** -0.591*** -0.904***
(0.074) (0.076) (0.076) (0.077) (0.072)

(2) p70 -0.243*** -0.329*** -0.422*** -0.552*** -0.865***
(0.074) (0.075) (0.076) (0.077) (0.072)

(3) p80 -0.192** -0.278*** -0.371*** -0.501*** -0.814***
(0.074) (0.075) (0.076) (0.077) (0.072)

(4) p90 -0.109 -0.196** -0.288*** -0.418*** -0.731***
(0.075) (0.076) (0.077) (0.078) (0.073)

(5) Market 0.008 -0.078 -0.171** -0.301*** -0.614***
(0.076) (0.077) (0.078) (0.079) (0.074)

This table reports estimated treatment effects on PM emissions, as in Table III, column (5) of the
main text, using different imputation rules for the treatment and control groups. The outcome vari-
able is the log of plant-level PM mass (kg) per month. A detailed note on the construction of the
outcome variable is in Appendix C.1. For each cell, the row describes the imputation rule used for
treated plants and the column the imputation rule used for control plants. Rule A is stack-experiment
imputation. Under this rule, missing values of a stack’s daily PM mass rate are imputed using the
stack’s mean PM mass rate across the experiment (July 2019 to March 2021, excluding interreg-
num). p70 imputes missing values of a stack’s daily PM mass rate using the stack’s 70th percentile
of PM mass rate across the experiment (July 2019 to March 2021, excluding interregnum). p80 and
p90 are identical to the p70 imputation rule except that they use the 80th and 90th percentiles of PM
mass rate respectively. Market is the market imputation rule described in Table C2. All regressions
control for plant characteristics including capital expenditure, operating cost, log(total heat output),
mean boiler installation year, and their corresponding indicators for missing values. Robust stan-
dard errors in parentheses are clustered at the plant level with statistical significance indicated by
⇤p <0.10; ⇤⇤p <0.05; ⇤⇤⇤p <0.01.
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D. APPENDIX: MODEL SPECIFICATION AND ABATEMENT COSTS

D.1. Model specification

1 Abatement technology. Plant i chooses the level of variable abatement expenditures

Zit in each compliance period t = 1,2, . . . ,10. Abatement expenditures could include running

abatement equipment more, changing inputs like filters or chemicals more often, or devoting more

labor to the maintenance and operation of a machine. Plants differ in total heat capacity Hi. Heat

capacity is the steam production capacity of a boiler, analogous to the horsepower of a car engine,

and is the relevant scale measure for fuel consumption and therefore air pollution emissions. Plants

may also differ in other characteristics such as their abatement capital stock.

We let Zit(Eit) be the level of expenditures as a function of emissions. Assume that Z0 < 0

and Z00 > 0; expenditures are decreasing as a function of emissions but at a rate that decreases in

magnitude as emissions grow. Further, there is some high, uncontrolled level of emissions Ei such

that Zit(Ei) = 0. The plant spends an added fixed cost Zi0 to maintain its abatement capital. We

treat this cost as sunk given the finding that abatement capital did not change in the experiment.

2 Emissions market regulation. An emissions market is a regulation that sets a market-

level cap Qt on emissions in period t and allows plants to trade permits so they collectively meet

that limit. The regulator allocates permits Ait to each plant and may retain or sell the balance. In the

Surat market, the allocation rule gave plants permits totaling 80% of the market cap in proportion

to their heat capacity, Ait µ Hi. Let Pt be the equilibrium price of permits, known to the plant.

Under the two assumptions of cost minimization and no market power, the plant chooses emis-

sions to minimize the total cost of compliance:

min
Eit

Zi0 +Zit(Eit)+Pt(Eit �Ait). (6)
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The first-order condition for the plant’s problem under these assumptions is

�∂Zit(Eit)

∂Eit
= MAC(Eit) = Pt . (7)

This condition is the familiar one that the marginal abatement costs of the plant at the chosen

emissions level equal the permit price. This equation has a unique solution for E⇤
it = MAC�1(Pt)

under our assumptions on the Z(·) function.

To calculate total costs we integrate marginal abatement costs to obtain each plant’s total vari-

able cost function. The marginal abatement cost function (4) we assume is consistent with a simple

representation of total variable abatement costs:

Zit(Eit) = eb0+x̃it Hb2

✓
1

b1 +1

◆⇣
Eb1+1

i �Eb1+1
it

⌘
, b1 2 (�1,0), (8)

where the parameters are common with (4). We estimate the parameters {b1, x̃it} of the abatement

cost function (8) using the marginal abatement cost specification (4). Moving from marginal to

total variable abatement costs introduces a constant of integration. In (8), the constant Ei has a

physical interpretation as the high level of uncontrolled emissions for a plant of size H = 1 when

no variable abatement expenditures are made.

D.2. Calculating abatement costs by regime

We wish to compare abatement costs across regulatory regimes, but permit bids are only avail-

able in the treatment group. In this subsection we describe how we use the marginal abatement

cost functions estimated in the treatment group to calculate abatement costs by regime.

1 Abatement costs in the emissions market. In the market all plants choose emissions

to set their marginal abatement cost equal to the permit price, and therefore the marginal costs of

all other plants. When all plants equalize their marginal abatement costs, the market as a whole

reduces emissions at the lowest possible aggregate cost. The level of emissions depends on neither

the plant’s fixed costs of abatement Zi0 nor the initial permit allocation Ait .
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Permit market equilibrium requires that aggregate emissions equal the market cap Qt . Writing

emissions as a function of the price, the equilibrium price is the P⇤
t that solves

Et(P⇤
t ) = Â

i
Eit(P⇤

t ) = Qt . (9)

The equilibrium price is unique because emissions for each plant monotonically decrease in price.

At the equilibrium allocation, the total variable costs of abatement in the market can be written

ZET S
t = Âi Zit(E⇤

it), with plant emissions given by E⇤
it = Eit(P⇤

t ).

With our empirical specification of abatement costs we can solve for total variable abatement

costs ZET S
t (Qt) at any proposed cap. The first step for a given cap Qt is to solve (9) to find the

equilibrium price P⇤
t . With the estimated marginal abatement cost functions (4), the empirical

inverse MAC function for each plant is:

Eit(Pt) = P1/b̂1
t e�x̂it/b̂1 . (10)

This function gives a plant’s emissions as a function of the permit price. Substituting into (9), we

can then find aggregate emissions at any price and solve for the equilibrium price P⇤
t (Qt) for a

given cap. We then calculate plant emissions with (10), evaluate plants’ variable abatement costs

(8) and sum across plants to find aggregate costs ZET S
t . The result of these steps is that we can

write aggregate costs as a function of the aggregate emissions cap, ZET S
t (Qt).

2 Abatement costs in the command-and-control regime . We estimate the stringency

of regulation in the command-and-control regime in the control group. A command-and-control

regime is any rule that dictates emissions {Eit} for each plant, rather than setting a limit across

all plants. The current regime, de jure, sets a maximal concentration limit on pollution emissions.

However, both in the control group and our prior work (Duflo et al., 2018), we observe de facto

non-compliance with the intensity standard and fairly wide dispersion in emissions rates, rather

than a point mass at the standard R (Online Appendix Figure B1).
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We therefore estimate costs in the command-and-control regime by evaluating MAC functions

at the observed emission rates in the control group. We represent emissions with plant-specific

emissions rates Rit = Eit/Hi per unit of capacity. Since we observe emissions rates in the control

group, it is straightforward to develop expressions for total emissions and total variable abatement

costs. Total status quo emissions ECC
t = Âi HiRit depend on the stringency of the plant-period spe-

cific intensity standards. Plant abatement costs are then the plant-period abatement cost function

evaluated at this emissions level, Zit(HiRit). Summing across plants, total variable abatement costs

under command-and-control are ZCC
t = Âi Zit(HiRit).

In contrast to the outcome under an emissions market, there is no reason to expect that costs

must be minimized by the command-and-control allocation of emissions. The de jure standard is

a uniform concentration standard. There is widespread noncompliance even with this standard.

We do not think this non-compliance is likely to equalize marginal abatement costs across plants.

While our past work found that the regulator has some, albeit very noisy, information on pollution

(Duflo et al., 2018), we expect marginal abatement costs are more difficult to estimate, since they

cannot be observed directly on a plant visit. We therefore assume in our baseline case for the

command-and-control regime that plant emissions rates are independent of plant marginal abate-

ment costs.

We use five different representations of the status quo to capture the distribution of emissions

rates in the command-and-control regime. The regimes differ in whether emissions rates are con-

stant or dispersed across plants and whether they are conditioned on plant characteristics. The

first two regimes we consider are: (i) constant emissions rate Rit = R; (ii) constant emissions rate

with error logRit ⇠ N (µt ,st), fit separately in each period. These regimes are too simple to

represent the status quo, because the data make clear that the emissions rate is declining in heat

capacity. This fact is consistent with a regulatory regime that inspects large plants more often and

so imposes greater expected penalties on them for high emissions rates.

We therefore favor regimes where the emissions rate depends on plant heat capacity. We fit the
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following regression in the control group separately for each compliance period:

logRit = b0t +b1t logHi + eit . (11)

The remaining three regimes we consider follow this approach: (iii) capacity-based emissions rate

Rit = exp(\logRit); (iv) capacity-based emissions rate with error Rit = exp(\logRites
it) for draws es

it ?

x̂it from the residuals of (11); (v) capacity-based emissions rate with correlated error, similar to

(iv), but with draws es
it that are slightly negatively correlated (r =�0.1) with marginal abatement

cost shocks x̂it .33 We draw the emissions rate shocks from a log normal distribution fit to the

variance of êit in each period. We include regime (iii) as a basis of comparison, though it will be

biased due to the exponentiation of a predicted value fitted in logs.

We use these regimes to set counterfactual emissions rates, our proxy for intensity standards,

for the treatment group plants, had they been regulated like control group plants. We then evaluate

treatment plants’ MAC functions at the simulated emissions rates to calculate the treatment plants’

total abatement costs if they had been assigned to the control group.

In counterfactuals we evaluate costs not only at the distribution of emissions in the control

group in the data, but also at higher or lower levels of emissions. We assume that a differently

stringent command-and-control regime would scale up or down all emissions rates by a common

factor d . In the control group, we estimate fitted emissions rates across plants {bRit} using one

of the five regimes described above. We then calculate a scaling factor d (Qt) = Qt/ECC
t to meet

emissions level Qt . We evaluate plant-specific costs at alternate stringencies to calculate aggregate

costs ZCC
t (d (Qt)) = Âi Zit(d (Qt)Hi bRit).

The idea of this approach is to preserve the dispersion in compliance, as observed in the current

regime, while scaling emissions upwards or downwards to meet different possible caps. This

assumes that the range of compliance at any new stringency would be the same, in proportional

terms, as is observed in the control group. Since plant abatement costs are convex, this approach
33This implies that high-cost plants will have somewhat lower emissions rates. We introduce this correlation to

capture, in a simple way, the observation that the regulator does have some information about plant emissions and
targets more polluting plants more aggressively (Duflo et al., 2018).
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of evaluating costs as we shift the distribution of emissions rates will produce higher aggregate

abatement costs than would simply evaluating all plants at the new mean emissions rate.

3 Comparison of abatement costs across regimes. Online Appendix Table D1,

panel A explores the robustness of the finding that the the market regime reduces total variable

abatement costs to different approaches to assigning each plant’s command-and-control emissions.

We use the same two reference levels of aggregate emissions, 170 tons (columns 1 to 3) and 240

tons (columns 4 to 6). Row A reports equilibrium market price and total variable abatement costs

under the market. Rows B1 to B5 present the total variable abatement costs under the command-

and-control regime and its percentage difference, relative to costs in the emissions market. The

rows under the command-and-control regime differ in how exactly they model the distribution of

emissions.

There are two main findings. First, total variable abatement costs are lower under the emissions

market than under the command-and-control regime. At the treatment emissions level, 170 tons per

month, total variable abatement costs are 12% higher under the status quo (column 3, row B4) than

under emissions trading (column 2, row A). The cost difference between regimes is great enough

that costs are 6% lower under the emissions market—with a 30% cut in emissions—than in the

command-and-control regime at the status quo emissions level (column 2, row A versus column 5,

row B4).

Second, the cost differences among the alternative representations of the command and control

regime are small and indeed smaller than the difference in cost between the market and command-

and-control regimes. The differences in costs in the command and control regime are due to

two forces: (i) heterogeneity in emissions rates interacting with convex abatement costs and (ii)

scale effects.34 We find that abatement costs are 8 to 13% higher under command-and-control at
34On heterogeneity, command and control regimes that allow idiosyncratic shocks across plants have higher costs

than regimes that do not because abatement costs are convex. This convexity pushes up marginal abatement costs
for plants that are assigned lower rates of emissions more than it reduces them for plants with higher rates (compare
column 2, rows B1 and B2). On scale, we find that larger plants tend to have higher marginal abatement costs because
the scale efficiencies in marginal abatement costs are outweighed by the higher marginal abatement costs associated
with the more stringent emissions standards that large plants face (compare row B1 with rows B3 to B5).
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the lower level of emissions (column 3) and 10 to 16% higher at the higher level of emissions.

We prefer the simulation draws that condition on plant heat capacity and draw over residualized

emissions levels, since emissions rates do vary systematically with plant size (heat capacity). For

our preferred estimates, in row B4, the level of costs under the command-and-control regime are

12% and 15% higher, at the respective treatment and control levels of emissions, implying that the

market cuts costs by 11% and 14% for these emissions levels.
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Table D1. Variable abatement costs under alternative regulatory regimes

Emissions = 170 tons Emissions = 240 tons

Price Cost DCost Price Cost DCost
(INR/kg) (INR m) (%) (INR/kg) (INR m) (%)

(1) (2) (3) (4) (5) (6)

Panel A: Iso-Elastic MAC Curve
A. Emissions market 12.2 10.1 – 9.9 9.3 –

B. Command and Control
1. Constant emissions rate 10.9 8.0% 10.2 10.0%
2. Constant emissions rate, with error 11.2 11.4% 10.6 14.1%
3. Capacity-based rate 10.9 8.2% 10.3 10.3%
4. Capacity-based rate, with error 11.3 11.8% 10.7 14.6%
5. Capacity-based rate, correlated error 11.4 12.9% 10.8 15.9%

Panel B: Step-Function MAC Curve
A. Emissions market 15.3 6.0 – 11.6 5.0 –

B. Command and Control
1. Constant emissions rate 7.9 32.4% 7.2 44.1%
2. Constant emissions rate, with error 7.9 32.6% 7.2 43.9%
3. Capacity-based rate 7.9 31.9% 7.1 42.9%
4. Capacity-based rate, with error 7.9 32.1% 7.1 42.9%
5. Capacity-based rate, correlated error 8.0 33.8% 7.3 45.5%

The table shows the results of counterfactual simulations under different regulatory regimes. Each row represents a different
regime. Each panel corresponds to a different functional form assumption on the plant level marginal abatement cost curve.
Within each panle the first row is the emissions market. The second through final rows in each panel are different command
and control regimes that vary in how the emissions target is set for each plant. Constant emissions rate sets a single fixed
ratio of emissions to heat output capacity for all plants. Constant emissions rate with error allows for idiosyncratic variation
in the constant rate across plants. Capacity-based rate sets an emissions rate as a function of plant capacity, such that
larger plants can have higher or lower rates of emission per unit capacity. Capacity-based rate with error allows for the
capacity-based rate to idiosyncratically vary across plants. Finally, capacity-based rate with correlated error is the same as
capacity-based rate with error except that the idiosyncratic error is drawn with a negative -0.1 correlation with estimated
plant marginal abatement cost shocks. Columns 1 to 3 show results for emissions of 170 tons per month (the treatment
level) and columns 4 to 6 for emissions of 240 tons per month (the control level). Within each set of three columns the
variables show the market price (if applicable), the total variable abatement costs per month, and the change in abatement
costs relative to the emissions market.
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E. APPENDIX: MARGINAL COST CURVE SPECIFICATION

E.1. Uncontrolled Emissions

Without any abatement particulate emissions can be very high. We let Ei represent the un-

controlled level of emissions for plant i. To calculate it, we first find the average flow rate across

manual samplings of that plant. These manual samplings include the ETS baseline, the CEMS

baseline, as well as possible calibration measurements in 2020 and 2022. We then assume a max-

imum possible outlet concentration of 2500 mg
Nm3 , which was determined by our field staff to be a

conservative plausible maximum, and we additionally assume operation for 12 hours per day for

the entire period. These together determine a maximum possible emitted mass of PM for the stack

for any period:

Ei
kg

period
= Flow-Ratei

Nm3

hr
·12

hr
day

·30
day

period
·2500

mg
Nm3 ·

1
1,000,000

kg
mg

E.2. Step Function

In the body of the paper we assume that plants marginal abatement cost curves (hereafter MAC

curves) follow a convenient iso-elastic form. However, it is worth examining what happens if we

were to assume a different form of marginal abatement cost curve: We here consider a step-function

MAC curve alternative.

1 Functional Form. The basic form of the step-function MAC curve, for a specific plant

i in period t, is shown in Figure E1. The intuition for this functional form is that if plant i doesn’t

run their abatement technology they will emit at Emax
i , if they do run their abatement tech they

will decrease their emissions down to Emin
i , and running their abatement tech costs xit . In order to

implement this MAC curve for each plant, we thus need, for each i, t, values of Emin
i , Emax

i and xit .

We set Emax
i =

�
1�1{i has cyclone}·0.8

�
·Ei. See Appendix E.1 for how we set Ei. This setup

allows plants to run their cyclones “for free” when they have one, decreasing their max potential

emissions by 80% (following the engineering estimates of cyclone efficiency reported in Table F1).
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Figure E1. Example Step-Function MAC Curve for Plant i in Period t

Emin
i Emax

i

xit

Emissions

MAC

Cyclones are mechanical abatement devices that run automatically based on the flow of the stack

gas through the device. Thus, for those plants with a cyclone (which covers 98% of our sample)

their abatement decision comes from whether or not they use further technology, with their cyclone

being used at all times.

To calculate Emin
i we take the minimum of (a) the minimum observed level of emissions for

plant i over any period, and (b) the abatement efficiency of plant i’s most advanced technology

(again following efficiencies in Table F1) times their Emax
i . The intuition for this is that the emis-

sions of a plant over a period provide an upper bound on how far they are able to abate their

emissions, while the engineering estimates of the efficiency of their abatement tech represents a

more direct estimate of how far they can reduce their emissions beyond Emax
i .35

Lastly, to calculate xit we again assume that plants bid their marginal costs of abatement, and

thereby set xit to the corresponding fixed-effect of a regression of first half of period bid prices on
35For those plants which have a cyclone as their maximum abatement technology we set Emin

i to the minimum of
(a) their minimum observed emissions over periods and (b) Emax

i , as the use of their cyclone has already been factored
in to Emax

i .
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plant-period fixed effects:

bitk = xit + eitk.

2 Market Clearing Prices. At a given market price Pt in period t, plant i will run their

abatement equipment if and only if Pt is at least as high as their marginal abatement cost:

Runit(Pt) = 1{Pt � xit}

Therefore, Eit is a weakly decreasing function of Pt :

Eit(Pt) = Emin
i ·Runit(Pt)+Emax

i · (1�Runit(Pt))

We thus define the market clearing price in market period t, when there is market cap Ct as:

P⇤
t = min

R+
Pt s.t. Â

i
Eit(Pt)Ct

The step functional form in which plants either don’t abate at all or abate to their minimum means

that it is possible for Âi Eit(P⇤
t ) < Ct . In this case, the discreteness of the abatement equipment

leads to over-compliance.

At a given allocation of emissions across plants we use the model to calculate costs. The

abatement cost function corresponds to the area under the MAC curve from Eit to •. However,

the step functional form only allows Eit to be either Emax
i or Emin

i depending on Runit . Abatement

costs will then equal:

Zit(Eit) = xit · (Emax
i �Eit)

= Runit ·xit · (Emax
i �Emin

i )

= 1{Eit = Emin
i } ·xit · (Emax

i �Emin
i )
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Command-and-Control As before we assume the command-and-control regime sets standards

and associated emissions levels Eit for each plant-period. If this assigned Eit < Emin
i then it will be

impossible for plant i to abate to this level, so we re-assign Eit = Emin
i . We then assume that plants

abate to achieve these levels of emissions, costing them:

Zit(Eit) = xit · (Emax
i �Eit)

3 Results. We now duplicate several results from the paper using the alternative, step-

function functional form for marginal abatement costs.

Figure E2 shows market prices calculated with the step-function form in red as a test of in-

sample model fit. The step-function model tends to over-predict market prices, relative to the

iso-elastic cost function model.

Figure E3 shows the distribution of emissions in the treatment market calculated with the step-

function MAC (panels A and B), the iso-elastic MAC (panels C and D) and in the data. The

step-function MAC leads to a multi-modal distribution of emissions. Because plants either run

their equipment (if the cost of the step is low enough) or do not, emissions are dispersed and there

are separate modes for plants based on these operating decisions. By contrast, the distributions of

emissions for the iso-elastic MACs and in the data are smoother.

We carry the step-function results through to counterfactual analysis of market cost savings

in Table D1, panel B. The rows of Panel B correspond to the different regimes discussed in 3 ,

simply changing the assumed functional form of the marginal abatement cost curves. The main

finding is that the alternative, step-function MAC model predicts much larger counterfactual cost

savings from the emissions market. The reason for this result is that, in the step function model, if

a plant is estimated to have low marginal abatement costs it will always have low costs, up to the

maximum efficacy of a piece of equipment. The costs of misallocation of abatement are therefore

large because the model extrapolates in-sample differences in cost over a large range of emissions.

In the iso-elastic MAC model, by contrast, a low-cost plant cannot take over such a large share of
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counterfactual abatement in the market, because its own MAC would curve upwards.

Figure E2. Model Fit to Market-Clearing Prices with Step-Function Alternative
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Model: step-function MAC clearing price
Data: clearing price (period mean)
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The figure shows the fit of the step-function and iso-elastic MAC models compared to the time series of market
and bid prices by compliance period. The solid red line with square points is the time series of market-clearing
prices in the fitted model with step-function MACs. The solid blue line with circular points is the time series of
market-clearing prices in the fitted model with the original iso-elastic MACs. The models are fit based on bids in
the first half of each compliance period. The dashed (black) line is the time series of mean bid prices in the data and
the dotted (black) line is the time series of market-clearing prices.

E.3. Iso-elastic MAC with heterogeneous elasticities of abatement costs

Our main specification for marginal abatement cost curves (4) allows the mean log marginal

abatement costs for each plant-period to differ but constrains all plants to have the same elasticity

of MAC with respect to emissions. This part considers our counterfactual results if we allow

heterogeneity in the MAC elasticity. In Table IV, column 5 allows the elasticity of MAC to differ

by what abatement equipment a plant has installed. Table E1 replicates the counterfactual results

of Table D1 Panel A, with the specification of column 5. We find that the magnitude and qualitative

pattern of cost savings in the emissions trading regime relative to the control regime are similar to

those reported in Table D1 Panel A.
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Figure E3. Histograms of predicted versus observed emissions
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B. Step-function MAC period 8
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C. Iso-elastic MAC period 4
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D. Iso-elastic MAC period 8
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E. Observed data period 4
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F. Observed data period 8

2 4 6 8 10
Log emissions (kg)

0

0.1

0.2

0.3

0.4

0.5

0.6

D
en

si
ty

The figure shows predicted and observed emissions levels in 2 periods for 2 different MAC curve specifications.
Panels A and B show predicted emissions when running our emissions market model under a step-function MAC
curve in periods 4 and 8 respectively. Panels C and D show the same except using the iso-elastic MAC curve. Panels
E and F show the observed distribution of emissions in those periods.
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Table E1. Variable abatement costs under alternative regulatory regimes (with Heterogeneity by APCD)

Emissions = 170 tons Emissions = 240 tons

Price Cost DCost Price Cost DCost
(INR/kg) (INR m) (%) (INR/kg) (INR m) (%)

(1) (2) (3) (4) (5) (6)

A. Emissions market 12.2 10.1 – 10.0 9.3 –

B. Command and Control
1. Constant emissions rate 11.0 8.6% 10.3 10.7%
2. Constant emissions rate, with error 11.3 11.8% 10.7 14.7%
3. Capacity-based rate 11.0 8.9% 10.4 11.1%
4. Capacity-based rate, with error 11.3 12.3% 10.8 15.2%
5. Capacity-based rate, correlated error 11.4 13.0% 10.8 16.2%

The table shows the results of counterfactual simulations under different regulatory regimes. Each row represents a different
regime. The first row is the emissions market. The second through final rows are different command and control regimes that
vary in how the emissions target is set for each plant. Constant emissions rate sets a single fixed ratio of emissions to heat output
capacity for all plants. Constant emissions rate with error allows for idiosyncratic variation in the constant rate across plants.
Capacity-based rate sets an emissions rate as a function of plant capacity, such that larger plants can have higher or lower rates
of emission per unit capacity. Capacity-based rate with error allows for the capacity-based rate to idiosyncratically vary across
plants. Finally, capacity-based rate with correlated error is the same as capacity-based rate with error except that the idiosyncratic
error is drawn with a negative -0.1 correlation with estimated plant marginal abatement cost shocks. Columns 1 to 3 show results
for emissions of 170 tons per month (the treatment level) and columns 4 to 6 for emissions of 240 tons per month (the control
level). Within each set of three columns the variables show the market price (if applicable), the total variable abatement costs per
month, and the change in abatement costs relative to the emissions market.
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F. APPENDIX: ADDITIONAL RESULTS

F.1. Engineering Estimates of Abatement Costs

This section compares market prices for pollution permits to engineering estimates of the costs

of running abatement equipment. In theory, the price of permits should reflect the marginal abate-

ment costs to each plant. We check this assumption, in broad terms, by comparing permit prices to

engineering measures of abatement costs.

To probe the validity of the assumption that bids can be used to infer marginal abatement costs,

we compare the bids against engineering estimates of abatement costs from Indian air pollution

control device vendors. As described in Section III, the market cleared at prices between the floor

of INR 5 per kg and INR 15 per kg, though average bid prices ranged as high as INR 45 per kg.

Online Appendix Table F1 presents estimates of abatement costs under ideal operating conditions

for four kinds of air pollution control devices under four hypothetical plant configurations. This

table assumes, as is likely the case in our data, that plants are already operating a single cyclone.

Engineering abatement costs vary widely depending mainly on (i) the scale of the plant (ii) the

type of equipment that is on the margin. If a plant is already running a cyclone, then average

(marginal) abatement costs for a mid-size plant (6 ton per hour boiler) to operate an additional

cyclone are 7 (2) INR per kg and an additional bag filter 10 (3) INR per kg. If a plant is small and

already running a cyclone, average (marginal) abatement costs to run a dry scrubber are as high as

71 (21) INR per kg. Variable abatement costs therefore range from INR 2 per kg to INR 20 per

kg, depending on what piece of equipment is used, under the assumed, ideal operating efficiency.

If operating efficiency is actually lower, as seems likely, and the reduction in emissions therefore

smaller, then the abatement cost per kg of emissions reduction would increase inversely with the

decline in efficiency.

Overall, this exercise supports the assumption that the bidding data can be used to infer marginal

abatement costs. We find that the market clearing permit prices overlap with engineering estimates

of the marginal abatement costs associated with operating abatement equipment.
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Table F1. Engineering estimates of abatement costs under ideal operating efficiency,
if a cyclone is already operating

Cyclone Bag Filter Scrubber ESP
(1) (2) (3) (4)

Total Boiler Capacity = 3 TPH

Capital costs (Rs/month, amort.) 6953.33 6518.75 10430.00 78225.00
Variable costs (Rs/month) 3000.00 2812.50 4500.00 33750.00
Emission reduction (%) 80.00 99.00 94.00 99.70
Assumed pollution (kg/month) 1575.90 1575.90 1575.90 1575.90
Emission abatement (kg/month) 1260.72 1560.14 1481.34 1571.17
Average abatement cost (Rs/kg) 7.89 5.98 10.08 71.27
Variable abatement cost (Rs/kg) 2.38 1.80 3.04 21.48

Total Boiler Capacity = 6 TPH

Capital costs (Rs/month, amort.) 9560.83 15645.00 16514.17 104300.00
Variable costs (Rs/month) 4125.00 6750.00 7125.00 45000.00
Emission reduction (%) 80.00 99.00 94.00 99.70
Assumed pollution (kg/month) 2323.37 2323.37 2323.37 2323.37
Emission abatement (kg/month) 1858.70 2300.14 2183.97 2316.40
Average abatement cost (Rs/kg) 7.36 9.74 10.82 64.45
Variable abatement cost (Rs/kg) 2.22 2.93 3.26 19.43

Total Boiler Capacity = 8 TPH

Capital costs (Rs/month, amort.) 11299.17 19990.83 26075.00 173833.33
Variable costs (Rs/month) 4875.00 8625.00 11250.00 75000.00
Emission reduction (%) 80.00 99.00 94.00 99.70
Assumed pollution (kg/month) 3612.38 3612.38 3612.38 3612.38
Emission abatement (kg/month) 2889.91 3576.26 3395.64 3601.55
Average abatement cost (Rs/kg) 5.60 8.00 10.99 69.09
Variable abatement cost (Rs/kg) 1.69 2.41 3.31 20.82

Total Boiler Capacity = 15 TPH

Capital costs (Rs/month, amort.) 13906.67 20860.00 26075.00 234675.00
Variable costs (Rs/month) 6000.00 9000.00 11250.00 101250.01
Emission reduction (%) 80.00 99.00 94.00 99.70
Assumed pollution (kg/month) 8781.49 8781.49 8781.49 8781.49
Emission abatement (kg/month) 7025.19 8693.67 8254.60 8755.14
Average abatement cost (Rs/kg) 2.83 3.43 4.52 38.37
Variable abatement cost (Rs/kg) 0.85 1.04 1.36 11.56

Note. Table displays engineering estimates of abatement cost for different APCDs and boiler capaci-
ties. We assume one cyclone is already operating when calculating the quantity of abatement, and we
assume each APCD is purchased in isolation. Costs can be compared with those in other tables at a
rate of INR 70 to USD 1. Capital costs are amortized to a monthly flow value. All plants are assumed
to have a raw inlet concentration of 2,000 mg/Nm3; in practice it can vary between 1,000 mg/Nm3

and 10,000 mg/Nm3. This is converted to a monthly mass rate via a volumetric flow rate collected at
baseline, assuming continuous operation for 16 hours/day and 25 days/month. Of plants with boilers
in our analysis sample, the boiler capacity (BC) distribution is: 11% have 2-3 TPH BC, 47% have 4-7
TPH BC, 36% have 8-14 TPH BC, 6% have 15+ TPH BC.
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F.2. Treatment effects on capital installation

Table F2 shows that the ETS treatment is estimated to have no effect on the presence of air

pollution control devices (APCDs), overall, since all plants already have APCDs of some kind

installed. There is suggestive evidence of a small shift toward less expensive APCDs such as

cyclones and bag filters (columns 1 and 2).

Table F2. Treatment effects on the presence of abatement devices

ComponentsAll
APCDs Cyclone Bag Scrubber ESP

(1) (2) (3) (4) (5)

ETS Treatment (=1) 0 0.0233⇤ 0.0650⇤⇤⇤ -0.0151 -0.0311
(.) (0.0134) (0.0231) (0.0310) (0.0207)

R2 . 0.66 0.68 0.71 0.75
Control mean 1.00 0.95 0.85 0.67 0.12
Plants 276 276 276 276 276

This table reports the effects of treatment assignment on the presence of APCDs. All spec-
ifications control for the corresponding baseline value. Robust standard errors are given in
parentheses with statistical significance indicated by ⇤p <0.10; ⇤⇤p <0.05; ⇤⇤⇤p <0.01.

F.3. Model robustness checks

1 Heterogeneity in estimated elasticities by time of bid. Section V estimates the

elasticity of marginal abatement costs with respect to emissions using data from the first half of

each compliance period. The argument is that plants only have a choice between abatement and

the purchase of permits during the first half of the period, because by the end of a period, emissions

are sunk and plant willingness-to-pay for permits should not depend on their abatement costs.

Figure F1 tests this idea by estimating the same elasticity separately in each week of the com-

pliance period. We find that the elasticity of marginal abatement costs with respect to emissions is

negative and economically and statistically significant during the first several weeks of the compli-

ance period. When there are two weeks or less remaining in the compliance, by contrast, the same

elasticity is estimated to be close to zero. As expected, plants’ bids are not sensitive to abatement
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costs when there is little time left in a period in which to abate.

Figure F1. Elasticity estimate by weeks remaining in the order period
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The top panel presents the coefficients of log(emissions as bid) from regressing ln(bid price) on log(emissions as
bid) and plant ⇥ period fixed effects, estimated with different sample truncations defined by the number of weeks
remaining in the order period. The bottom panel shows the number of bids placed in different sample truncations.
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F.4. Significance of Emissions Non-Reporting

In this section we investigate if differences between plants who report different amounts might

be driving any of our results.

Table F3 shows the same balance table as Table I from the main paper, only now comparing

those plants above versus below median levels of daily data reporting. There are some differences

between high- and low-reporting plants, but they are not large. The main difference appears to be

that high-reporting plants are somewhat larger, with higher sales revenue and boiler house capital

expenditure (panel A). There are no differences in abatement equipment installation (panel B). On

emissions, high-reporting plants have similar PM emissions mass rates and baseline PM concen-

trations to low-reporting plants, and high-reporting plants are somewhat more likely (10 pp with a

standard error of 5.5 pp) to be above the emissions concentration standard at baseline.

We next examine whether abatement costs or being in the treatment group are related to plant’s

data reporting. To do this we calculate predicted abatement costs using baseline rates of equipment

installation for different plants and the average costs from Table F1. We then regress reporting rates

on predicted abatement costs and their interaction with treatment status to test whether plants with

higher costs report less. The results of this regression are in Table F4. We do not find any significant

effect of predicted abatement costs on reporting or differential reporting in the treatment.

Table F5 then estimates treatment effects on pollution controlling directly for plant reporting

rates. We estimate a similar magnitude of average treatment effect conditional on reporting rates.

Table F3. Balance of plant characteristics by whether report more than median reporting

Over Median Under Median Difference
(1) (2) (3)

Panel A: Plant Measures
Total electricity cost (1,000 USD) 466.5 344.1 122.4

[833.7] [401.9] (78.1)
Log(plant total heat output) 15.6 15.6 0.042

[0.62] [0.48] (0.065)
Size as recorded on environment consent (1 to 3) 1.41 1.31 0.10

[0.66] [0.59] (0.074)
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Small-scale (size=1) 0.68 0.75 -0.068
[0.47] [0.43] (0.054)

Large-scale (size=3) 0.096 0.062 0.033
[0.29] [0.24] (0.032)

Number of stacks 1.08 1.05 0.030
[0.40] [0.21] (0.037)

Textiles sector (=1) 0.85 0.88 -0.028
[0.36] [0.33] (0.041)

Gross Sales Revenue in 2017 (1,000 USD) 15125.8 6950.0 8175.8⇤
[54715.6] [13111.3] (4609.6)

Panel B: Plant Abatement and Investment Cost
Boiler house employment 36.4 32.7 3.78

[32.4] [30.0] (3.70)
Boiler house capital expenditure (1,000 USD) 215.8 149.6 66.2⇤

[403.6] [174.7] (36.8)
Boiler house operating cost (1,000 USD) 142.8 108.1 34.7⇤

[202.5] [83.9] (17.8)
APCD: Cyclone present 0.98 0.97 0.012

[0.14] [0.17] (0.019)
APCD: Bag filter present 0.82 0.86 -0.038

[0.38] [0.35] (0.043)
APCD: Scrubber present 0.64 0.62 0.020

[0.48] [0.49] (0.058)
APCD: ESP present 0.12 0.070 0.051

[0.33] [0.26] (0.035)

Panel C: Plant Pollution Measures
Plant total PM mass rate (kg/hr) 3.70 3.50 0.20

[4.97] [3.73] (0.52)
Plant mean PM concentration (mg/Nm3) 179.5 167.8 11.7

[154.2] [152.3] (18.2)
Plant mean Ringelmann score (1 to 5) 1.32 1.41 -0.086⇤

[0.39] [0.41] (0.047)
Above regulatory standard at ETS baseline (=1) 0.36 0.26 0.10⇤

[0.48] [0.44] (0.055)

Number of plants 156 136

44



Appendix F

This table shows differences in plant scale (panel A), plant abatement and investment costs (panel B), and plant
pollution (panel C) between the plants who report above and below the median level across plants. Each plants level
of reporting is calculated as the average minute-level CEMS data availability across the full sample period and across
all stacks belonging to that plant. The only plants which are included in this table are those in the analysis set. This
sample consists of 292 plants that had at least one day of PM data from CEMS devices during the ETS experiment.
In panel B, cyclone, bag filter, scrubber, and electrostatic precipitator (ESP) are different air pollution control devices
(APCDs). Some plants did not respond to some questions in the survey and so certain variable rows have fewer
observations than the full sample size. The first and second columns show means with standard deviations given in
brackets. The third column shows the coefficients from regressions of each variable on treatment, with robust standard
errors in parentheses. ⇤p <0.10; ⇤⇤p <0.05; ⇤⇤⇤p <0.01.

Table F4. Treatment effect on reporting by predicted plant
abatement costs

Dependent Variable:
Share of Day Not-Reporting

Treatment (=1) -0.166***
(0.035)

Predicted Abatement Cost 0.000
(0.002)

Predicted Abatement Cost ⇥ Treatment 0.000
(0.002)

R2 0.13
Observations 304

Unit of observation is plant. Predicted Abatement Cost variable for industry set
to the engineering estimate of the average abatement cost per kg from Table F1
assuming Boiler Capacity = 8TPH) for the most advanced abatement technology
of the plant: Cyclone less advanced than bag-filter less advanced than scrubber
less advanced than ESP. Share of day not reporting calculated at industry level as
average over industry’s stacks and over all days (excluding interregnum). Robust
standard errors in parentheses. Statistical significance is indicated by ⇤p <0.10;
⇤⇤p <0.05; ⇤⇤⇤p <0.01.
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Table F5. Treatment effects on PM emissions (log(PM mass/month)) controlling for data availability

No Imputed Months Imputed Months

(1) (2) (3) (4) (5) (6) (7) (8)

ETS Treatment (=1) -0.179⇤⇤ -0.203⇤⇤⇤ -0.180⇤⇤ -0.207⇤⇤⇤ -0.240⇤⇤⇤ -0.247⇤⇤⇤ -0.233⇤⇤⇤ -0.250⇤⇤⇤
(0.077) (0.077) (0.076) (0.076) (0.073) (0.073) (0.061) (0.061)

Share of Day Reporting 0.0000343 0.00127 0.000325 0.00148 -0.00222⇤⇤⇤ -0.00187⇤⇤ -0.00445⇤⇤⇤ -0.00350⇤⇤⇤
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Year-Month FE Yes Yes Yes Yes

Imputation rule Rule A Rule A Rule B Rule B
Reweighted Yes Yes
Mean dep. var (control) 6.67 6.67 6.66 6.66 6.80 6.80 6.88 6.88
R2 0.13 0.18 0.14 0.17 0.19 0.22 0.19 0.27
Plants 292 292 292 292 292 292 292 292
Observations 3235 3235 3235 3235 3796 3796 3796 3796

This table reports the estimated treatment effects on PM emissions adding average availability. The outcome variable is the log of plant-level
PM mass (kg) per month. A detailed note on the construction of the outcome variable is in Appendix C.1. Columns 5 and 6 impute data with
Imputation Rule A: Stack-Experiment. Under this rule, missing values of a stack’s daily PM mass rate are imputed using the stack’s mean
PM mass rate across the experiment (July 2019 to March 2021, excluding interregnum). Columns 7 and 8 impute data with Imputation
Rule B: Treatment-Month. Under this rule, missing values of a stack’s daily PM mass rate are imputed using the monthly mean PM mass
rate of the stack’s treatment group. All columns control for plant characteristics including capital expenditure, operating cost, log(total heat
output), mean boiler installation year, and their corresponding indicators for missing values. In addition to plant controls, columns 2, 4,
6, and 8 add year-month fixed effects to control for time variant differences common in each plant. We also apply the inverse probability
weighting method in columns 3 and 4. The probability of reporting in a month is predicted using a probit model where the only explanatory
variable is an indicator variable for the treatment status in a prior experiment that randomized CEMS installation timing. Robust standard
errors in parentheses are clustered at the plant level with statistical significance indicated by ⇤p <0.10; ⇤⇤p <0.05; ⇤⇤⇤p <0.01.
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F.5. Impact of COVID-19 Pandemic

In this section we include several analyses trying to determine the impact of COVID-19 on the

experiment.

First, we examine how net-demand (defined as a plant’s total period emissions less their initial

permit allocation) differed before and after the COVID interregnum. Figure F2 shows a scatter

plot of the plant net permit demand before (compliance periods 1 to 6) and after (periods 7 to 10)

the COVID-19 interruption. The scatter plot shows that plant net demands are highly correlated in

the pre- and post-Covid periods. Plants that have higher emissions than permit allocations before

the pandemic tend to also have higher emissions than permit allocations afterwards.

In Table F6 we then estimate the treatment effect on emissions separately for the pre- and post-

COVID subsets of our sample. In specifications without imputation or with imputation Rule A

there is no statistically significant difference in the treatment effect before and after the Covid-19

lockdown. In specifications with imputation rule B, the treatment effect is statistically smaller in

magnitude (less negative) after the lockdown but remains large, negative and statistically signif-

icantly different from zero. The point estimates for the treatment effect on pollution are smaller

post-lockdown, which would be consistent with a less tightly binding cap in a weaker economy.

In Table F7 we re-estimate the counterfactual market versus command-control results from

Table D1 using both the iso-elastic and step-function MAC, only restricting the sample to the

pre-COVID periods.

Lastly, Figure F3 displays emissions over final permit holdings without GPCB’s period 7 permit

adjustment. This figure is identical to Figure IV other than that it removes additional permits

granted to plants during compliance period 7, the initial post-Covid-lockdown period. Footnote 22

describes the adjustment in more detail.
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Figure F2. Net demand before and after COVID
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The figure shows net demand (emissions – initial allocation) for each industry averaged across pre vs post COVID
compliance periods. Each point represents a single industry. The solid black line is the OLS fit for the data The
dotted black line is the y = x line. We omit the 9 industries with values of magnitude greater than 2000 for ease of
visualization.
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Table F6. Treatment effects on PM emissions (log(PM mass/month)) before and after COVID

No Imputation With Imputation

(1) (2) (3) (4) (5) (6) (7) (8)

ETS Treatment (=1) -0.211⇤⇤ -0.219⇤⇤ -0.211⇤⇤ -0.224⇤⇤⇤ -0.303⇤⇤⇤ -0.303⇤⇤⇤ -0.372⇤⇤⇤ -0.372⇤⇤⇤
(0.087) (0.088) (0.085) (0.085) (0.077) (0.077) (0.060) (0.060)

Post-Covid (=1) -0.173⇤⇤ -0.159⇤⇤ -0.149⇤⇤⇤ -0.276⇤⇤⇤
(0.082) (0.079) (0.047) (0.059)

Treatment ⇥ Post-Covid 0.0652 0.0656 0.0668 0.0717 0.0538 0.0538 0.144⇤⇤ 0.144⇤⇤
(0.093) (0.094) (0.091) (0.092) (0.060) (0.060) (0.071) (0.071)

Year-Month FE Yes Yes Yes Yes

Imputation rule Rule A Rule A Rule B Rule B
Reweighted Yes Yes
Mean dep. var (control) 6.67 6.67 6.66 6.66 6.80 6.80 6.88 6.88
R2 0.14 0.17 0.14 0.17 0.19 0.22 0.18 0.26
Plants 292 292 292 292 292 292 292 292
Observations 3235 3235 3235 3235 3796 3796 3796 3796

This table reports the estimated treatment effects on PM emissions. The outcome variable is the log of plant-level PM mass
(kg) per month. A detailed note on the construction of the outcome variable is in Appendix C.1. Post-Covid is defined as
periods 7 to 10. Columns 5 and 6 impute data with Imputation Rule A: Stack-Experiment. Under this rule, missing values
of a stack’s daily PM mass rate are imputed using the stack’s mean PM mass rate across the experiment (July 2019 to March
2021, excluding interregnum). Columns 7 and 8 impute data with Imputation Rule B: Treatment-Month. Under this rule,
missing values of a stack’s daily PM mass rate are imputed using the monthly mean PM mass rate of the stack’s treatment
group. All columns control for plant characteristics including capital expenditure, operating cost, log(total heat output), mean
boiler installation year, and their corresponding indicators for missing values. In addition to plant controls, columns 2, 4, 6,
and 8 add year-month fixed effects to control for time variant differences common in each plant. We also apply the inverse
probability weighting method in columns 3 and 4. The probability of reporting in a month is predicted using a probit model
where the only explanatory variable is an indicator variable for the treatment status in a prior experiment that randomized
CEMS installation timing. Robust standard errors in parentheses are clustered at the plant level with statistical significance
indicated by ⇤p <0.10; ⇤⇤p <0.05; ⇤⇤⇤p <0.01.
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Table F7. Variable abatement costs under alternative regulatory regimes using only pre-COVID data

Emissions = 170 tons Emissions = 240 tons

Price Cost DCost Price Cost DCost
(INR/kg) (INR m) (%) (INR/kg) (INR m) (%)

(1) (2) (3) (4) (5) (6)

Panel A: Iso-Elastic MAC Curve
A. Emissions market 12.7 8.1 – 9.7 7.3 –

B. Command and Control
1. Constant emissions rate 9.0 11.4% 8.3 13.6%
2. Constant emissions rate, with error 9.4 16.9% 8.8 20.4%
3. Capacity-based rate 8.9 10.9% 8.2 12.9%
4. Capacity-based rate, with error 9.4 16.7% 8.7 19.9%
5. Capacity-based rate, correlated error 9.5 18.2% 8.9 21.8%

Panel B: Step-Function MAC Curve
A. Emissions market 16.3 5.8 – 12.0 4.8 –

B. Command and Control
1. Constant emissions rate 9.0 54.6% 8.2 72.7%
2. Constant emissions rate, with error 9.0 54.7% 8.2 72.3%
3. Capacity-based rate 8.9 52.5% 8.0 68.7%
4. Capacity-based rate, with error 8.9 52.7% 8.0 68.5%
5. Capacity-based rate, correlated error 9.0 54.7% 8.2 71.8%

The table shows the results of counterfactual simulations under different regulatory regimes. Each row represents a different
regime. The first row is the emissions market. The second through final rows are different command and control regimes that
vary in how the emissions target is set for each plant. Constant emissions rate sets a single fixed ratio of emissions to heat output
capacity for all plants. Constant emissions rate with error allows for idiosyncratic variation in the constant rate across plants.
Capacity-based rate sets an emissions rate as a function of plant capacity, such that larger plants can have higher or lower rates
of emission per unit capacity. Capacity-based rate with error allows for the capacity-based rate to idiosyncratically vary across
plants. Finally, capacity-based rate with correlated error is the same as capacity-based rate with error except that the idiosyncratic
error is drawn with a negative -0.1 correlation with estimated plant marginal abatement cost shocks. Columns 1 to 3 show results
for emissions of 170 tons per month (the treatment level) and columns 4 to 6 for emissions of 240 tons per month (the control
level). Within each set of three columns the variables show the market price (if applicable), the total variable abatement costs per
month, and the change in abatement costs relative to the emissions market. Data used for estimation is restricted to pre-COVID
periods (periods 1 to 6) only.
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Figure F3. Distribution of Emissions over Final Permit Holdings by Compliance Period without
GPCB’s Period 7 Adjustment
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This figure plots the distributions of (emissions / final permit holdings ⇥ 100%) across treated plants (N = 156) by
compliance period. Final permit holdings are the total number of permits a plant held at the end of the true-up period
after each compliance period. Emissions data and permit holdings are from the administrative records of the market
operator. Permit holdings are adjusted to remove those granted in GPCB’s period 7 adjustment. Emissions are the
validated emissions for each plant, which include any imputed emissions filled-in for periods of missing data. These
validated emissions are used to determine compliance.

51



Appendix F

F.6. Manual Sampling and CEMS Comparison

Figure F4 plots emissions measurements from manual samplings versus CEMS readings of the

emissions from the same window of time during which the manual sampling was taking place. A

regression line and the y = x line are also shown. There is a high correlation between the manual

samples and CEMS readings.

Figure F4. Simulatenous CEMS and sampling comparison
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The figure plots CEMS readings against concurrent manual samplings. Unit of observation is an industry. The solid
black line is the OLS fit for the data The dotted black line is the y = x line. We restrict the graph to only those
CEMS readings with at least 15% data availability during the appropriate window, and to those with concentrations
less than 2000 mg/Nm3.

F.7. Impact of Device Types

In Table F8 we estimate the treatment effect on emissions levels separately for each potential

CEMS device type (type 1, types 2, or both types). We do not find any significant effects of

device type on treatment effect. The coefficient on Type 2 devices is positive, though statistically

insignificant. A positive effect would be consistent with larger, more sophisticated plants selecting

a more expensive piece of equipment.
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Table F8. Treatment effects on PM emissions (log(PM mass/month)) depending on device type

No Imputation With Imputation

(1) (2) (3) (4) (5) (6) (7) (8)

ETS Treatment (=1) -0.130 -0.147⇤ -0.135 -0.154⇤ -0.247⇤⇤⇤ -0.247⇤⇤⇤ -0.310⇤⇤⇤ -0.310⇤⇤⇤
(0.087) (0.087) (0.085) (0.085) (0.084) (0.084) (0.065) (0.065)

Device FE: Type 2 0.159 0.177 0.141 0.159 0.0955 0.0955 0.126 0.126
(0.219) (0.221) (0.221) (0.224) (0.173) (0.173) (0.136) (0.137)

Device FE: Both Types 0.362⇤ 0.354⇤ 0.362⇤ 0.355⇤ 0.289 0.289 0.179 0.179
(0.212) (0.209) (0.204) (0.201) (0.210) (0.211) (0.156) (0.156)

Treatment ⇥ Device FE: Type 2 -0.0910 -0.0934 -0.0639 -0.0652 -0.00556 -0.00556 -0.0495 -0.0495
(0.264) (0.266) (0.267) (0.271) (0.228) (0.228) (0.190) (0.190)

Treatment ⇥ Device FE: Both Types -0.319 -0.302 -0.311 -0.299 -0.229 -0.229 -0.0798 -0.0798
(0.269) (0.268) (0.266) (0.265) (0.261) (0.262) (0.214) (0.214)

Year-Month FE Yes Yes Yes Yes

Imputation rule Rule A Rule A Rule B Rule B
Reweighted Yes Yes
Mean dep. var (control) 6.65 6.65 6.64 6.64 6.76 6.76 6.87 6.87
R2 0.14 0.18 0.14 0.18 0.18 0.22 0.17 0.26
Plants 279 279 279 279 279 279 279 279
Observations 3110 3110 3110 3110 3627 3627 3627 3627

This table reports the estimated treatment effects on PM emissions. The outcome variable is the log of plant-level PM mass (kg) per
month. A detailed note on the construction of the outcome variable is in Appendix C.1. Columns 5 and 6 impute data with Imputation
Rule A: Stack-Experiment. Under this rule, missing values of a stack’s daily PM mass rate are imputed using the stack’s mean PM mass
rate across the experiment (July 2019 to March 2021, excluding interregnum). Columns 7 and 8 impute data with Imputation Rule B:
Treatment-Month. Under this rule, missing values of a stack’s daily PM mass rate are imputed using the monthly mean PM mass rate
of the stack’s treatment group. We add fixed effects for the different types of abatement devices which an industry has across all of its
stacks (Type 1, Type 2, or both). Type 1 Devices are the omitted level of device type fixed effect. Approximately 80%, 10%, and 10%
of plants are set to Type 1, Type 2, and having both types, respectively. All columns control for plant characteristics including capital
expenditure, operating cost, log(total heat output), mean boiler installation year, and their corresponding indicators for missing values.
In addition to plant controls, columns 2, 4, 6, and 8 add year-month fixed effects to control for time variant differences common in each
plant. We also apply the inverse probability weighting method in columns 3 and 4. The probability of reporting in a month is predicted
using a probit model where the only explanatory variable is an indicator variable for the treatment status in a prior experiment that
randomized CEMS installation timing. Robust standard errors in parentheses are clustered at the plant level with statistical significance
indicated by ⇤p <0.10; ⇤⇤p <0.05; ⇤⇤⇤p <0.01.
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F.8. Prior Regulations in Other Markets

The market experiment in this paper is layered on top of existing regulations which mandate in-

vestment in abatement and monitoring technologies such as CEMS devices. This layered mandate

is typical of the way in which markets have been implemented throughout the world and studied

throughout the economics literature. In Table F9 we canvas 6 different emissions markets in the

US and EU, give the prior regulations which plants were facing, whether those regulations were

lifted once the market was put in place, and also give a citation to a paper studying those markets.

The table summarizes command-and-control regulations that were in place before or along-

side major emissions markets. Each row considers one market. The “Program” column names

the emissions market and the pollutant it covers. The “Prior Regulation” column lists relevant

regulation which was introduced before or concurrent to the emissions market. CAAA refers to

the Clean Air Act Amendments; NSPS refers to New Source Performance Standards (applies to

all new sources of NOx and SO2, applying uniform national standard based on best adequately

demonstrated technology); BACT refers to Best Available Control Technology (applies to all new

sources of NOx and SO2 emitting significant amounts in attainment areas and is at least as strict

as NSPS); RACT refers to Best Reasonably Available Control Technology. The “Prior Regulation

Lifted” column indicates whether (or how) the prior regulations were adjusted at the point of in-

troducing the emissions market. The “Paper on Market” column gives citations to papers studying

the market.
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Table F9. Prior regulations across emissions markets

Program (Pol-
lutant)

Location Year In-
stituted

Prior Regulation Prior Regula-
tion Lifted?

Paper on Mar-
ket

Nitrogen
Oxides Bud-
get Program
(NOx)

Eastern US 2003 • 1970 CAAA: NSPS, BACT
• 1990 CAAA: Required subset of boilers in extreme areas to transition to

low-pollution fuel
• 1990 CAAA: Acid Rain program manted installing NOx monitoring and

abatement normally met with control technology
• In 1995 Ozone Transport Commission required existing sources to meet

RACT limits and ran OTC NOx budget program

No Deschênes,
Greenstone
and Shapiro
(2017)

AB-32 cap-
and-trade
system (CO2)

California 2013 • Bill establishing market included complementary programs and modifica-
tions of existing programs, including LCFS, RPS, and efficiency mandates

• LCFS adopted in 2009 and “require[d] the carbon intensity of transportation
fuels to be reduced by at least ten percent in 2020” (ARB, 48). “In April
2011 California adopted a 33 percent RPS” (Appendix, 21). The efficiency
mandates varied by different buildings and appliances (ARB, 37).

No, in-
troduced
concurrently

Borenstein
et al. (2019)

RECLAIM:
Regional
Clean Air
Incentives
Market (NOx)

South Coast
Air Basin
in Southern
California

1994 • 1970 CAAA: NSPS, BACT
• In 1990 South Coast Air Basin was only nonattainment area for NOx emis-

sions. Thus, the NOx emissions standards may have been more stringent
here than other areas.

• Prior to RECLAIM, command-and-control program emphasized advanced
control technologies, which they adopted in late 1989.

Relaxed Fowlie, Hol-
land and
Mansur (2012)

Acid Rain Pro-
gram (SO2)

US 1990 • 1970 CAAA: NSPS, BACT
• 1977 CAAA: New coal plants must operate with scrubbers and achieve a

certain reduction in potential SO2 emissions (70-90%)

No Joskow and
Schmalensee
(1998)

Regional
Greenhouse
Gas Initiative
(CO2)

Northeast
US

2009 • All states except Virginia had implemented an RPS
• Complementary measures as part of RGGI separate from its emissions cap:

RGGI auction revenues used for ”energy efficiency purposes”.
• CAAA in force: favoring substitution to cleaner sources from coal powered

generation

No Murray and
Maniloff
(2015); Kim
and Kim
(2016)

European
Union Emis-
sions Trading
System (CO2)

EU 2005 • Directive 2001/77/EC in 2001 set country specific targets for adoption of
renewable energy production.

• Directive 2003/30/EC in 2003 promoted biofuels for EU transport.

No Deschênes,
Greenstone
and Shapiro
(2017)
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G. APPENDIX: BENEFIT-COST ANALYSIS

We conduct a benefit-cost analysis of introducing an expanded ETS in Surat covering all plants

that burn solid fuel. The analysis compares the social benefits of cleaner air, as measured by

the valuation of the additional life-years that would be gained from pollution abatement, against

the costs of emissions abatement and monitoring. For this exercise we assume that the ETS is

expanded with the cap proportionately scaled to maintain the same regulatory stringency per plant

as in the experiment. Table VI summarizes the analysis we describe below.

G.1. Costs of monitoring and abatement

The costs of the ETS include both the monitoring infrastructure necessary for the market and

the abatement costs, or cost savings, induced by the market. In the experiment, both treatment and

control groups purchased CEMS but these devices were not used under the status quo.

We estimate the annual costs of operating a CEMS system at approximately USD 5000 per

plant. We arrive at this number by assuming an annualized capital cost of CEMS of INR 200,000,

annual device calibration costs of INR 30,000, annual fees for software licenses and maintenance

contracts of INR 60,000, and miscellaneous costs (replacement parts, labor etc) at INR 50,000.

The annualized CEMS costs are based on an assumed system cost of INR 800,000 with a 4 year

equipment life and no discounting. This equipment life describes the realized experience of some

plants in our sample but is lower than typical manufacturer claims. License fee and contract costs

are based on conversations with vendors and industry. Calibration costs assume three visits a year.

Partly offsetting this monitoring cost, our estimates imply a reduction in abatement costs of

roughly USD 650 per plant-year, despite that treatment plants are operating at a sharply lower

level of emissions than control plants (row A2). The net per plant costs of monitoring are therefore

reduced to closer to USD 4,000. There were a total of 906 registered solid fuel burning plants

in Surat during the period of the market and thus in a hypothetical scale-up to cover all plants,

we estimate the total private costs, inclusive of both monitoring and abatement, to be USD 3.91

million per year.
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G.2. Benefits of lower pollution

The benefit of the ETS is cleaner air. We monetize the benefit of cleaner air by using estimates

of the damage from particulates, in terms of life-years gained, and valuing these life-years using

estimates of the value of statistical life.

The first step is to estimate how much ETS would reduce ambient pollution (as opposed to

industrial pollution emissions). This step is non-trivial because there are many sources of PM2.5.

A simple estimate of the impact of the ETS is that ambient pollution would fall by an amount equal

to the percentage reduction in emissions due to the regulation, multiplied by the total contribution

of these sources to ambient concentrations.

The first term is simply the assumed reduction in emissions, either 10%, 30% or 50%, across

columns 1 to 3. For the second term we turn to an estimate from the atmospheric science literature

that industrial sources in Surat raise ambient fine particle concentrations by 28.32 µg/m3. Gut-

tikunda, Nishadh and Jawahar (2019) use pollution inventories combined with an atmospheric dis-

persion model to apportion ambient particulate concentrations in Indian cities to different sources.36

The authors estimate annual average ambient PM 2.5 concentrations in the city at 88.5 µg/m3, with

32% (or 28.32 µg/m3) coming from local industry. Then the Surat ETS applied to all plants in the

city would reduce fine particulate pollution by 0.30⇥28.32 = 8.5µg/m3 (panel B, column 2).

The second step is to estimate the life-years gained from lower pollution. A large literature

has attempted to quantify the impact of air pollution on life expectancy. Ebenstein et al. (2017)

use a spatial regression discontinuity, at high levels of pollution in China, to estimate that a 10

µg/m3 reduction in pollution results in a 0.98 year increase in life expectancy. Other estimates in

the literature include 0.61 years (Pope, Ezzati and Dockery, 2009) and 0.12 years (calculated from

Table S2 in Apte et al. (2018)).

These estimates should be interpreted as the benefits of long-run changes in pollution. If we

were to assume that an ETS were implemented in Surat for 70 years (roughly the current life
36Their updated assessment for Surat is available at: https://urbanemissions.info/india-apna/

surat-india/.
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expectancy in India), reducing pollution each year by 8.5 µg/m3, then the health benefits from

Ebenstein et al. (2017) would suggest life expectancy gains of 0.98⇥ 8.5/10 = 0.83 years per

person. The population of Surat in 2021 as estimated 7.5 million people. Thus the total gain in life

years would be these per-person estimates multiplied by the city population, or 6.24 million years.

Assuming these accrue gradually over the 70 year period of the ETS, the gain from a single year

of the program would be 89,208 years.

The third step is to value the life-years gained. We use a VSL estimate for India of USD

665,000 (Nair et al., 2021) and apply this equally to every year of an assumed 70 year life yielding

a dollar value of USD 9,500 per life-year gained. This number, combined with the life years gained

from a year of the ETS, would imply a single year health benefit of USD 847 million and thus a

benefit to cost ratio as high as 215 to 1 (panel E, row 1, column 2). Using the lower estimates of

health benefits from Apte et al. (2018) yields a benefit to cost ratio of 26 (panel E, row 4, column

2). By either estimate, the benefits of the expanded ETS greatly exceed the total of monitoring and

abatement costs.
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